Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On two extensions of equimatchable graphs (1612.08531v1)

Published 27 Dec 2016 in math.CO

Abstract: A graph is said to be equimatchable if all its maximal matchings are of the same size. In this work we introduce two extensions of the property of equimatchability by defining two new graph parameters that measure how far a graph is from being equimatchable. The first one, called the matching gap, measures the difference between the sizes of a maximum matching and a minimum maximal matching. The second extension is obtained by introducing the concept of equimatchable sets; a set of vertices in a graph $G$ is said to be equimatchable if all maximal matchings of $G$ saturating the set are of the same size. Noting that $G$ is equimatchable if and only if the empty set is equimatchable, we study the equimatchability defect of the graph, defined as the minimum size of an equimatchable set in it. We develop several inapproximability and parameterized complexity results and algorithms regarding the computation of these two parameters, a characterization of graphs of unit matching gap, exact values of the equimatchability defect of cycles, and sharp bounds for both parameters.

Summary

We haven't generated a summary for this paper yet.