Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Ideology Detection for Twitter Users with Heterogeneous Types of Links (1612.08207v1)

Published 24 Dec 2016 in cs.SI

Abstract: The problem of ideology detection is to study the latent (political) placement for people, which is traditionally studied on politicians according to their voting behaviors. Recently, more and more studies begin to address the ideology detection problem for ordinary users based on their online behaviors that can be captured by social media, e.g., Twitter. As far as we are concerned, however, the vast majority of the existing methods on ideology detection on social media have oversimplified the problem as a binary classification problem (i.e., liberal vs. conservative). Moreover, though social links can play a critical role in deciding one's ideology, most of the existing work ignores the heterogeneous types of links in social media. In this paper we propose to detect \emph{numerical} ideology positions for Twitter users, according to their \emph{follow}, \emph{mention}, and \emph{retweet} links to a selected set of politicians. A unified probabilistic model is proposed that can (1) explain the reasons why links are built among people in terms of their ideology, (2) integrate heterogeneous types of links together in determining people's ideology, and (3) automatically learn the quality of each type of links in deciding one's ideology. Experiments have demonstrated the advantages of our model in terms of both ranking and political leaning classification accuracy. It is shown that (1) using multiple types of links is better than using any single type of links alone to determine one's ideology, and (2) our model is even more superior than baselines when dealing with people that are sparsely linked in one type of links. We also show that the detected ideology for Twitter users aligns with our intuition quite well.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Yupeng Gu (4 papers)
  2. Ting Chen (148 papers)
  3. Yizhou Sun (149 papers)
  4. Bingyu Wang (5 papers)
Citations (20)

Summary

We haven't generated a summary for this paper yet.