Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Error tracing in linear and concatenated quantum circuits (1612.08044v1)

Published 23 Dec 2016 in quant-ph and cs.ET

Abstract: Descriptions of quantum algorithms, communication etc. protocols assume the existence of closed quantum system. However, real life quantum systems are open and are highly sensitive to errors. Hence error correction is of utmost importance if quantum computation is to be carried out in reality. Ideally, an error correction block should be placed after every gate operation in a quantum circuit. This increases the overhead and reduced the speedup of the quantum circuit. Moreover, the error correction blocks themselves may induce errors as the gates used for error correction may be noisy. In this paper, we have proposed a procedure to trace error probability due to noisy gates and decoherence in quantum circuit and place an error correcting block only when the error probability exceeds a certain threshold. This procedure shows a drastic reduction in the required number of error correcting blocks. Furthermore, we have considered concatenated codes with tile structure layout lattice architecture[25][21],[24] and SWAP gate based qubit transport mechanism. Tracing errors in higher levels of concatenation shows that, in most cases, after 1 or 2 levels of concatenation, the number of QECC blocks required become static. However, since the gate count increases with increasing concatenation, the percentage saving in gate count is considerably high.

Citations (6)

Summary

We haven't generated a summary for this paper yet.