Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the bifurcation set of unique expansions (1612.07982v5)

Published 23 Dec 2016 in math.NT and math.DS

Abstract: Given a positive integer $M$, for $q\in(1, M+1]$ let ${\mathcal{U}}q$ be the set of $x\in[0, M/(q-1)]$ having a unique $q$-expansion with the digit set ${0, 1,\ldots, M}$, and let $\mathbf{U}_q$ be the set of corresponding $q$-expansions. Recently, Komornik et al.~(Adv. Math., 2017) showed that the topological entropy function $H: q \mapsto h{top}(\mathbf{U}q)$ is a Devil's staircase in $(1, M+1]$. Let $\mathcal{B}$ be the bifurcation set of $H$ defined by [ \mathcal{B}={q\in(1, M+1]: H(p)\ne H(q)\quad\textrm{for any}\quad p\ne q}. ] In this paper we analyze the fractal properties of $\mathcal{B}$, and show that for any $q\in \mathcal{B}$, [ \lim{\delta\rightarrow 0} \dim_H(\mathcal{B}\cap(q-\delta, q+\delta))=\dim_H\mathcal{U}q, ] where $\dim_H$ denotes the Hausdorff dimension. Moreover, when $q\in\mathcal{B}$ the univoque set $\mathcal{U}_q$ is dimensionally homogeneous, i.e., $ \dim_H(\mathcal{U}_q\cap V)=\dim_H\mathcal{U}_q $ for any open set $V$ that intersect $\mathcal{U}_q$. As an application we obtain a dimensional spectrum result for the set $\mathcal{U}$ containing all bases $q\in(1, M+1]$ such that $1$ admits a unique $q$-expansion. In particular, we prove that for any $t>1$ we have [ \dim_H(\mathcal{U}\cap(1, t])=\max{ q\le t}\dim_H\mathcal{U}_q. ] We also consider the variations of the sets $\mathcal{U}=\mathcal{U}(M)$ when $M$ changes.

Summary

We haven't generated a summary for this paper yet.