Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Methodology and Convergence Rates for Functional Time Series Regression (1612.07197v1)

Published 21 Dec 2016 in math.ST and stat.TH

Abstract: The functional linear model extends the notion of linear regression to the case where the response and covariates are iid elements of an infinite dimensional Hilbert space. The unknown to be estimated is a Hilbert-Schmidt operator, whose inverse is by definition unbounded, rendering the problem of inference ill-posed. In this paper, we consider the more general context where the sample of response/covariate pairs forms a weakly dependent stationary process in the respective product Hilbert space: simply stated, the case where we have a regression between functional time series. We consider a general framework of potentially nonlinear processes, exploiting recent advances in the spectral analysis of time series. Our main result is the establishment of the rate of convergence for the corresponding estimators of the regression coefficients, the latter forming a summable sequence in the space of Hilbert-Schmidt operators. In a sense, our main result can be seen as a generalisation of the classical functional linear model rates, to the case of time series, and rests only upon cumulant mixing conditions. While the analysis becomes considerably more involved in the dependent case, the rates are strikingly comparable to those of the i.i.d. case, but at the expense of an additional factor caused by the necessity to estimate the spectral density operator at a nonparametric rate, as opposed to the parametric rate for covariance operator estimation.

Summary

We haven't generated a summary for this paper yet.