Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Nash Equilibrium Seeking with Non-doubly Stochastic Communication Weight Matrix (1612.07179v2)

Published 21 Dec 2016 in cs.SY and cs.GT

Abstract: A distributed Nash equilibrium seeking algorithm is presented for networked games. We assume an incomplete information available to each player about the other players' actions. The players communicate over a strongly connected digraph to send/receive the estimates of the other players' actions to/from the other local players according to a gossip communication protocol. Due to asymmetric information exchange between the players, a non-doubly (row) stochastic weight matrix is defined. We show that, due to the non-doubly stochastic property, the total average of all players' estimates is not preserved for the next iteration which results in having no exact convergence. We present an almost sure convergence proof of the algorithm to a Nash equilibrium of the game. Then, we extend the algorithm for graphical games in which all players' cost functions are only dependent on the local neighboring players over an interference digraph. We design an assumption on the communication digraph such that the players are able to update all the estimates of the players who interfere with their cost functions. It is shown that the communication digraph needs to be a superset of a transitive reduction of the interference digraph. Finally, we verify the efficacy of the algorithm via a simulation on a social media behavioral case.

Citations (13)

Summary

We haven't generated a summary for this paper yet.