Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Handwritten Signature Verification Using Hand-Worn Devices (1612.06305v1)

Published 19 Dec 2016 in cs.CR, cs.CV, and cs.CY

Abstract: Online signature verification technologies, such as those available in banks and post offices, rely on dedicated digital devices such as tablets or smart pens to capture, analyze and verify signatures. In this paper, we suggest a novel method for online signature verification that relies on the increasingly available hand-worn devices, such as smartwatches or fitness trackers, instead of dedicated ad-hoc devices. Our method uses a set of known genuine and forged signatures, recorded using the motion sensors of a hand-worn device, to train a machine learning classifier. Then, given the recording of an unknown signature and a claimed identity, the classifier can determine whether the signature is genuine or forged. In order to validate our method, it was applied on 1980 recordings of genuine and forged signatures that we collected from 66 subjects in our institution. Using our method, we were able to successfully distinguish between genuine and forged signatures with a high degree of accuracy (0.98 AUC and 0.05 EER).

Citations (19)

Summary

We haven't generated a summary for this paper yet.

Youtube Logo Streamline Icon: https://streamlinehq.com