Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
175 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Hidden Absorbing Semi-Markov Model for Informatively Censored Temporal Data: Learning and Inference (1612.06007v2)

Published 18 Dec 2016 in cs.AI and stat.ML

Abstract: Modeling continuous-time physiological processes that manifest a patient's evolving clinical states is a key step in approaching many problems in healthcare. In this paper, we develop the Hidden Absorbing Semi-Markov Model (HASMM): a versatile probabilistic model that is capable of capturing the modern electronic health record (EHR) data. Unlike exist- ing models, an HASMM accommodates irregularly sampled, temporally correlated, and informatively censored physiological data, and can describe non-stationary clinical state transitions. Learning an HASMM from the EHR data is achieved via a novel forward- filtering backward-sampling Monte-Carlo EM algorithm that exploits the knowledge of the end-point clinical outcomes (informative censoring) in the EHR data, and implements the E-step by sequentially sampling the patients' clinical states in the reverse-time direction while conditioning on the future states. Real-time inferences are drawn via a forward- filtering algorithm that operates on a virtually constructed discrete-time embedded Markov chain that mirrors the patient's continuous-time state trajectory. We demonstrate the di- agnostic and prognostic utility of the HASMM in a critical care prognosis setting using a real-world dataset for patients admitted to the Ronald Reagan UCLA Medical Center.

Citations (31)

Summary

We haven't generated a summary for this paper yet.