Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Inexact Proximal Gradient Methods for Non-convex and Non-smooth Optimization (1612.06003v2)

Published 18 Dec 2016 in cs.LG and stat.ML

Abstract: In machine learning research, the proximal gradient methods are popular for solving various optimization problems with non-smooth regularization. Inexact proximal gradient methods are extremely important when exactly solving the proximal operator is time-consuming, or the proximal operator does not have an analytic solution. However, existing inexact proximal gradient methods only consider convex problems. The knowledge of inexact proximal gradient methods in the non-convex setting is very limited. % Moreover, for some machine learning models, there is still no proposed solver for exactly solving the proximal operator. To address this challenge, in this paper, we first propose three inexact proximal gradient algorithms, including the basic version and Nesterov's accelerated version. After that, we provide the theoretical analysis to the basic and Nesterov's accelerated versions. The theoretical results show that our inexact proximal gradient algorithms can have the same convergence rates as the ones of exact proximal gradient algorithms in the non-convex setting. Finally, we show the applications of our inexact proximal gradient algorithms on three representative non-convex learning problems. All experimental results confirm the superiority of our new inexact proximal gradient algorithms.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Bin Gu (86 papers)
  2. De Wang (8 papers)
  3. Zhouyuan Huo (29 papers)
  4. Heng Huang (189 papers)
Citations (38)

Summary

We haven't generated a summary for this paper yet.