Papers
Topics
Authors
Recent
Search
2000 character limit reached

Distributed Generalized Cross-Validation for Divide-and-Conquer Kernel Ridge Regression and its Asymptotic Optimality

Published 18 Dec 2016 in stat.ML | (1612.05907v2)

Abstract: Tuning parameter selection is of critical importance for kernel ridge regression. To this date, data driven tuning method for divide-and-conquer kernel ridge regression (d-KRR) has been lacking in the literature, which limits the applicability of d-KRR for large data sets. In this paper, by modifying the Generalized Cross-validation (GCV, Wahba, 1990) score, we propose a distributed Generalized Cross-Validation (dGCV) as a data-driven tool for selecting the tuning parameters in d-KRR. Not only the proposed dGCV is computationally scalable for massive data sets, it is also shown, under mild conditions, to be asymptotically optimal in the sense that minimizing the dGCV score is equivalent to minimizing the true global conditional empirical loss of the averaged function estimator, extending the existing optimality results of GCV to the divide-and-conquer framework.

Citations (23)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.