Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Universal formula for the mean first passage time in planar domains (1612.05889v1)

Published 18 Dec 2016 in cond-mat.stat-mech, math-ph, math.AP, and math.MP

Abstract: We derive a general exact formula for the mean first passage time (MFPT) from a fixed point inside a planar domain to an escape region on its boundary. The underlying mixed Dirichlet-Neumann boundary value problem is conformally mapped onto the unit disk, solved exactly, and mapped back. The resulting formula for the MFPT is valid for an arbitrary space-dependent diffusion coefficient, while the leading logarithmic term is explicit, simple, and remarkably universal. In contrast to earlier works, we show that the natural small parameter of the problem is the harmonic measure of the escape region, not its perimeter. The conventional scaling of the MFPT with the area of the domain is altered when diffusing particles are released near the escape region. These findings change the current view of escape problems and related chemical or biochemical kinetics in complex, multiscale, porous or fractal domains, while the fundamental relation to the harmonic measure opens new ways of computing and interpreting MFPTs.

Summary

We haven't generated a summary for this paper yet.