Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Homotopy invariance of the Conley index and local Morse homology in Hilbert spaces (1612.05524v1)

Published 16 Dec 2016 in math.DS

Abstract: In this paper we introduce a new compactness condition - Property (C) - for flows in (not necessary locally compact) metric spaces. For such flows a Conley type theory can be developed. For example (regular) index pairs always exist for Property-(C) flows and a Conley index can be defined. An important class of flows satisfying this compactness condition are LS-flows. We apply E-cohomology to index pairs of LS-flows and obtain the E-cohomological Conley index. We formulate a continuation principle for the E-cohomological Conley index and show that all LS-flows can be continued to LS-gradient flows. We show that the Morse homology of LS-gradient flows computes the E-cohomological Conley index. We use Lyapunov functions to define the Morse-Conley-Floer cohomology in this context, and show that it is also isomorphic to the E-cohomological Conley index.

Summary

We haven't generated a summary for this paper yet.