Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Pair correlations and equidistribution (1612.05495v1)

Published 16 Dec 2016 in math.NT, math-ph, math.MP, and math.SP

Abstract: A deterministic sequence of real numbers in the unit interval is called \emph{equidistributed} if its empirical distribution converges to the uniform distribution. Furthermore, the limit distribution of the pair correlation statistics of a sequence is called Poissonian if the number of pairs $x_k,x_l \in (x_n)_{1 \leq n \leq N}$ which are within distance $s/N$ of each other is asymptotically $\sim 2sN$. A randomly generated sequence has both of these properties, almost surely. There seems to be a vague sense that having Poissonian pair correlations is a "finer" property than being equidistributed. In this note we prove that this really is the case, in a precise mathematical sense: a sequence whose asymptotic distribution of pair correlations is Poissonian must necessarily be equidistributed. Furthermore, for sequences which are not equidistributed we prove that the square-integral of the asymptotic density of the sequence gives a lower bound for the asymptotic distribution of the pair correlations.

Summary

We haven't generated a summary for this paper yet.