Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On Natural Deduction for Herbrand Constructive Logics II: Curry-Howard Correspondence for Markov's Principle in First-Order Logic and Arithmetic (1612.05457v2)

Published 16 Dec 2016 in cs.LO and math.LO

Abstract: Intuitionistic first-order logic extended with a restricted form of Markov's principle is constructive and admits a Curry-Howard correspondence, as shown by Herbelin. We provide a simpler proof of that result and then we study intuitionistic first-order logic extended with unrestricted Markov's principle. Starting from classical natural deduction, we restrict the excluded middle and we obtain a natural deduction system and a parallel Curry-Howard isomorphism for the logic. We show that proof terms for existentially quantified formulas reduce to a list of individual terms representing all possible witnesses. As corollary, we derive that the logic is Herbrand constructive: whenever it proves any existential formula, it proves also an Herbrand disjunction for the formula. Finally, using the techniques just introduced, we also provide a new computational interpretation of Arithmetic with Markov's principle.

Citations (2)

Summary

We haven't generated a summary for this paper yet.