Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Essential spectrum of non-self-adjoint singular matrix differential operators (1612.05193v2)

Published 15 Dec 2016 in math.SP

Abstract: The purpose of this paper is to study the essential spectrum of non-self-adjoint singular matrix differential operators in the Hilbert space $L2(\mathbb{R})\oplus L2(\mathbb{R})$ induced by matrix differential expressions of the form \begin{align}\label{abstract:mdo} \left(\begin{array}{cc} \tau_{11}(\,\cdot\,,D) & \tau_{12}(\,\cdot\,,D)\[3.5ex] \tau_{21}(\,\cdot\,,D) & \tau_{22}(\,\cdot\,,D) \end{array}\right), \end{align} where $\tau_{11}$, $\tau_{12}$, $\tau_{21}$, $\tau_{22}$ are respectively $m$-th, $n$-th, $k$-th and 0 order ordinary differential expressions with $m=n+k$ being even. Under suitable assumptions on their coefficients, we establish an analytic description of the essential spectrum. It turns out that the points of the essential spectrum either have a local origin, which can be traced to points where the ellipticity in the sense of Douglis and Nirenberg breaks down, or they are caused by singularity at infinity.

Summary

We haven't generated a summary for this paper yet.