Papers
Topics
Authors
Recent
2000 character limit reached

Chromatic quasisymmetric functions of directed graphs

Published 14 Dec 2016 in math.CO | (1612.04786v2)

Abstract: Chromatic quasisymmetric functions of labeled graphs were defined by Shareshian and Wachs as a refinement of Stanley's chromatic symmetric functions. In this extended abstract, we consider an extension of their definition from labeled graphs to directed graphs, suggested by Richard Stanley. We obtain an F-basis expansion of the chromatic quasisymmetric functions of all digraphs and a p-basis expansion for all symmetric chromatic quasisymmetric functions of digraphs, extending work of Shareshian-Wachs and Athanasiadis. We show that the chromatic quasisymmetric functions of proper circular arc digraphs are symmetric functions, which generalizes a result of Shareshian and Wachs on natural unit interval graphs. The directed cycle on n vertices is contained in the class of proper circular arc digraphs, and we give a generating function for the e-basis expansion of the chromatic quasisymmetric function of the directed cycle, refining a result of Stanley for the undirected cycle. We present a generalization of the Shareshian-Wachs refinement of the Stanley-Stembridge e-positivity conjecture.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.