Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Approximate fast graph Fourier transforms via multi-layer sparse approximations (1612.04542v3)

Published 14 Dec 2016 in cs.NA

Abstract: The Fast Fourier Transform (FFT) is an algorithm of paramount importance in signal processing as it allows to apply the Fourier transform in O(n log n) instead of O(n 2) arithmetic operations. Graph Signal Processing (GSP) is a recent research domain that generalizes classical signal processing tools, such as the Fourier transform, to situations where the signal domain is given by any arbitrary graph instead of a regular grid. Today, there is no method to rapidly apply graph Fourier transforms. We propose in this paper a method to obtain approximate graph Fourier transforms that can be applied rapidly and stored efficiently. It is based on a greedy approximate diagonalization of the graph Laplacian matrix, carried out using a modified version of the famous Jacobi eigenvalues algorithm. The method is described and analyzed in detail, and then applied to both synthetic and real graphs, showing its potential.

Citations (64)

Summary

We haven't generated a summary for this paper yet.