2000 character limit reached
The arc metric on Teichmüller spaces of surfaces of infinite type with boundary (1612.04213v1)
Published 13 Dec 2016 in math.GT
Abstract: Let $X_{0}$ be a complete hyperbolic surface of infinite type with geodesic boundary which admits a countable pair of pants decomposition. As an application of the Basmajian identity for complete bordered hyperbolic surfaces of infinite type with limit sets of 1-dimensional measure zero, we define an asymmetric metric (which is called arc metric) on the quasiconformal Teichm\"uller space $\mathcal{T}(X_{0})$ provided that $X_{0}$ satisfies a geometric condition. Furthermore, we construct several examples of hyperbolic surfaces of infinite type satisfying the geometric condition and discuss the relation between the Shiga's condition and the geometric condition.