Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An Artificial Neural Networks based Temperature Prediction Framework for Network-on-Chip based Multicore Platform (1612.04197v1)

Published 12 Dec 2016 in cs.DC, cs.AR, and cs.NE

Abstract: Continuous improvement in silicon process technologies has made possible the integration of hundreds of cores on a single chip. However, power and heat have become dominant constraints in designing these massive multicore chips causing issues with reliability, timing variations and reduced lifetime of the chips. Dynamic Thermal Management (DTM) is a solution to avoid high temperatures on the die. Typical DTM schemes only address core level thermal issues. However, the Network-on-chip (NoC) paradigm, which has emerged as an enabling methodology for integrating hundreds to thousands of cores on the same die can contribute significantly to the thermal issues. Moreover, the typical DTM is triggered reactively based on temperature measurements from on-chip thermal sensor requiring long reaction times whereas predictive DTM method estimates future temperature in advance, eliminating the chance of temperature overshoot. Artificial Neural Networks (ANNs) have been used in various domains for modeling and prediction with high accuracy due to its ability to learn and adapt. This thesis concentrates on designing an ANN prediction engine to predict the thermal profile of the cores and Network-on-Chip elements of the chip. This thermal profile of the chip is then used by the predictive DTM that combines both core level and network level DTM techniques. On-chip wireless interconnect which is recently envisioned to enable energy-efficient data exchange between cores in a multicore environment, will be used to provide a broadcast-capable medium to efficiently distribute thermal control messages to trigger and manage the DTM schemes.

Citations (9)

Summary

We haven't generated a summary for this paper yet.