Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On Choosing Training and Testing Data for Supervised Algorithms in Ground Penetrating Radar Data for Buried Threat Detection (1612.03477v1)

Published 11 Dec 2016 in cs.CV

Abstract: Ground penetrating radar (GPR) is one of the most popular and successful sensing modalities that has been investigated for landmine and subsurface threat detection. Many of the detection algorithms applied to this task are supervised and therefore require labeled examples of target and non-target data for training. Training data most often consists of 2-dimensional images (or patches) of GPR data, from which features are extracted, and provided to the classifier during training and testing. Identifying desirable training and testing locations to extract patches, which we term "keypoints", is well established in the literature. In contrast however, a large variety of strategies have been proposed regarding keypoint utilization (e.g., how many of the identified keypoints should be used at targets, or non-target, locations). Given the variety keypoint utilization strategies that are available, it is very unclear (i) which strategies are best, or (ii) whether the choice of strategy has a large impact on classifier performance. We address these questions by presenting a taxonomy of existing utilization strategies, and then evaluating their effectiveness on a large dataset using many different classifiers and features. We analyze the results and propose a new strategy, called PatchSelect, which outperforms other strategies across all experiments.

Citations (27)

Summary

We haven't generated a summary for this paper yet.