Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Low-rank matrix recovery via rank one tight frame measurements (1612.03108v1)

Published 9 Dec 2016 in cs.IT, math.IT, and math.PR

Abstract: The task of reconstructing a low rank matrix from incomplete linear measurements arises in areas such as machine learning, quantum state tomography and in the phase retrieval problem. In this note, we study the particular setup that the measurements are taken with respect to rank one matrices constructed from the elements of a random tight frame. We consider a convex optimization approach and show both robustness of the reconstruction with respect to noise on the measurements as well as stability with respect to passing to approximately low rank matrices. This is achieved by establishing a version of the null space property of the corresponding measurement map.

Citations (5)

Summary

We haven't generated a summary for this paper yet.