Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Octahedral developing of knot complement I: pseudo-hyperbolic structure (1612.02928v3)

Published 9 Dec 2016 in math.GT

Abstract: It is known that a knot complement can be decomposed into ideal octahedra along a knot diagram. A solution to the gluing equations applied to this decomposition gives a pseudo-developing map of the knot complement, which will be called a pseudo-hyperbolic structure. In this paper, we study these in terms of segment and region variables which are motivated by the volume conjecture so that we can compute complex volumes of all the boundary parabolic representations explicitly. We investigate the octahedral developing and holonomy representation carefully, and obtain a concrete formula of Wirtinger generators for the representation and also cusp shape. We demonstrate explicit solutions for $T(2,N)$ torus knots, $J(N,M)$ knots and also for other interesting knots as examples. Using these solutions we can observe the asymptotic behavior of complex volumes and cusp shapes of these knots. We note that this construction works for any knot or link, and reflects systematically both geometric properties of the knot complement and combinatorial aspect of the knot diagram.

Summary

We haven't generated a summary for this paper yet.