Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A generalized Trudinger-Moser inequality on a compact Riemannian surface (1612.02877v1)

Published 9 Dec 2016 in math.DG and math.AP

Abstract: Let $(\Sigma, g)$ be a compact Riemannian surface. Let $\psi$, $h$ be two smooth functions on $\Sigma$ with $\int_\Sigma \psi dv_g \neq 0$ and $h\geq0$, $h\not\equiv0$. In this paper, using a method of blowup analysis, we prove that the functional \begin{align}\label{functional_J} J{\psi,h}(u)=\frac{1}{2}\int {\Sigma}|\nabla_g u|2dv_g + 8\pi\frac{1}{\int\Sigma \psi dv_g}\int_\Sigma \psi udv_g-8\pi\log\int _{\Sigma}he{u}dv_g \end{align} is bounded from below in $W{1,2}(\Sigma,g)$. Moreover, we obtain a sufficient condition under which $J{\psi, h}$ attains its infimum in $W{1,2}(\Sigma,g)$. These results generalize the main results in \cite{DJLW97} and \cite{YZ2016}.

Summary

We haven't generated a summary for this paper yet.