Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Moment Relaxations of Optimal Power Flow Problems: Beyond the Convex Hull (1612.02519v1)

Published 8 Dec 2016 in math.OC

Abstract: Optimal power flow (OPF) is one of the key electric power system optimization problems. "Moment" relaxations from the Lasserre hierarchy for polynomial optimization globally solve many OPF problems. Previous work illustrates the ability of higher-order moment relaxations to approach the convex hulls of OPF problems' non-convex feasible spaces. Using a small test case, this paper focuses on the ability of the moment relaxations to globally solve problems with objective functions that have unconstrained minima at infeasible points inside the convex hull of the non-convex constraints.

Citations (6)

Summary

We haven't generated a summary for this paper yet.