Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Neural Turing Machines: Convergence of Copy Tasks (1612.02336v1)

Published 7 Dec 2016 in cs.NE

Abstract: The architecture of neural Turing machines is differentiable end to end and is trainable with gradient descent methods. Due to their large unfolded depth Neural Turing Machines are hard to train and because of their linear access of complete memory they do not scale. Other architectures have been studied to overcome these difficulties. In this report we focus on improving the quality of prediction of the original linear memory architecture on copy and repeat copy tasks. Copy task predictions on sequences of length six times larger than those the neural Turing machine was trained on prove to be highly accurate and so do predictions of repeat copy tasks for sequences with twice the repetition number and twice the sequence length neural Turing machine was trained on.

Summary

We haven't generated a summary for this paper yet.