Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Matrix multiplication algorithms from group orbits (1612.01527v2)

Published 5 Dec 2016 in cs.CC, cs.DS, math.AG, and math.RT

Abstract: We show how to construct highly symmetric algorithms for matrix multiplication. In particular, we consider algorithms which decompose the matrix multiplication tensor into a sum of rank-1 tensors, where the decomposition itself consists of orbits under some finite group action. We show how to use the representation theory of the corresponding group to derive simple constraints on the decomposition, which we solve by hand for n=2,3,4,5, recovering Strassen's algorithm (in a particularly symmetric form) and new algorithms for larger n. While these new algorithms do not improve the known upper bounds on tensor rank or the matrix multiplication exponent, they are beautiful in their own right, and we point out modifications of this idea that could plausibly lead to further improvements. Our constructions also suggest further patterns that could be mined for new algorithms, including a tantalizing connection with lattices. In particular, using lattices we give the most transparent proof to date of Strassen's algorithm; the same proof works for all n, to yield a decomposition with $n3 - n + 1$ terms.

Citations (13)

Summary

We haven't generated a summary for this paper yet.