Papers
Topics
Authors
Recent
2000 character limit reached

Finite blocklength and moderate deviation analysis of hypothesis testing of correlated quantum states and application to classical-quantum channels with memory

Published 5 Dec 2016 in quant-ph, cs.IT, math.IT, math.ST, and stat.TH | (1612.01464v2)

Abstract: Martingale concentration inequalities constitute a powerful mathematical tool in the analysis of problems in a wide variety of fields ranging from probability and statistics to information theory and machine learning. Here we apply techniques borrowed from this field to quantum hypothesis testing, which is the problem of discriminating quantum states belonging to two different sequences ${\rho_n}_{n}$ and ${\sigma_n}_n$. We obtain upper bounds on the finite blocklength type II Stein- and Hoeffding errors, which, for i.i.d. states, are in general tighter than the corresponding bounds obtained by Audenaert, Mosonyi and Verstraete [Journal of Mathematical Physics, 53(12), 2012]. We also derive finite blocklength bounds and moderate deviation results for pairs of sequences of correlated states satisfying a (non-homogeneous) factorization property. Examples of such sequences include Gibbs states of spin chains with translation-invariant finite range interaction, as well as finitely correlated quantum states. We apply our results to find bounds on the capacity of a certain class of classical-quantum channels with memory, which satisfy a so-called channel factorization property- both in the finite blocklength and moderate deviation regimes.

Citations (10)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.