Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On intermediate level sets of two-dimensional discrete Gaussian Free Field (1612.01424v1)

Published 5 Dec 2016 in math.PR, math-ph, and math.MP

Abstract: We consider the discrete Gaussian Free Field (DGFF) in scaled-up (square-lattice) versions of suitably regular continuum domains $D\subset\mathbb C$ and describe the scaling limit, including local structure, of the level sets at heights growing as a $\lambda$-multiple of the height of the absolute maximum, for any $\lambda\in(0,1)$. We prove that, in the scaling limit, the scaled spatial position of a typical point $x$ sampled from this level set is distributed according to a Liouville Quantum Gravity (LQG) measure in $D$ at parameter equal $\lambda$-times its critical value, the field value at $x$ has an exponential intensity measure and the configuration near $x$ reduced by the value at $x$ has the law of a pinned DGFF reduced by a suitable multiple of the potential kernel. In particular, the law of the total size of the level set, properly-normalized, converges that that of the total mass of the LQG measure. This sharpens considerably an earlier conclusion by Daviaud.

Summary

We haven't generated a summary for this paper yet.