Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Minimizing the Continuous Diameter when Augmenting a Geometric Tree with a Shortcut (1612.01370v4)

Published 5 Dec 2016 in cs.CG

Abstract: We augment a tree $T$ with a shortcut $pq$ to minimize the largest distance between any two points along the resulting augmented tree $T+pq$. We study this problem in a continuous and geometric setting where $T$ is a geometric tree in the Euclidean plane, where a shortcut is a line segment connecting any two points along the edges of $T$, and we consider all points on $T+pq$ (i.e., vertices and points along edges) when determining the largest distance along $T+pq$. We refer to the largest distance between any two points along edges as the continuous diameter to distinguish it from the discrete diameter, i.e., the largest distance between any two vertices. We establish that a single shortcut is sufficient to reduce the continuous diameter of a geometric tree $T$ if and only if the intersection of all diametral paths of $T$ is neither a line segment nor a single point. We determine an optimal shortcut for a geometric tree with $n$ straight-line edges in $O(n \log n)$ time. Apart from the running time, our results extend to geometric trees whose edges are rectifiable curves. The algorithm for trees generalizes our algorithm for paths.

Citations (2)

Summary

We haven't generated a summary for this paper yet.