2000 character limit reached
Characterization of CMO via compactness of the commutators of bilinear fractional integral operators (1612.01116v1)
Published 4 Dec 2016 in math.FA
Abstract: Let $I_{\alpha}$ be the bilinear fractional integral operator, $B_{\alpha}$ be a more singular family of bilinear fractional integral operators and $\vec{b}=(b,b)$. B\'{e}nyi et al. in \cite{B1} showed that if $b\in {\rm CMO}$, the {\rm BMO}-closure of $C{\infty}_{c}(\mathbb{R}n)$, the commutator $[b,B_{\alpha}]{i}(i=1,2)$ is a separately compact operator. In this paper, it is proved that $b\in {\rm CMO}$ is necessary for $[b,B{\alpha}]{i}(i=1,2)$ is a compact operator. Also, the authors characterize the compactness of the {\bf iterated} commutator $[\Pi\vec{b},I{\alpha}]$ of bilinear fractional integral operator. More precisely, the commutator $[\Pi\vec{b},I_{\alpha}]$ is a compact operator if and only if $b\in {\rm CMO}$.