Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Characterization of CMO via compactness of the commutators of bilinear fractional integral operators (1612.01116v1)

Published 4 Dec 2016 in math.FA

Abstract: Let $I_{\alpha}$ be the bilinear fractional integral operator, $B_{\alpha}$ be a more singular family of bilinear fractional integral operators and $\vec{b}=(b,b)$. B\'{e}nyi et al. in \cite{B1} showed that if $b\in {\rm CMO}$, the {\rm BMO}-closure of $C{\infty}_{c}(\mathbb{R}n)$, the commutator $[b,B_{\alpha}]{i}(i=1,2)$ is a separately compact operator. In this paper, it is proved that $b\in {\rm CMO}$ is necessary for $[b,B{\alpha}]{i}(i=1,2)$ is a compact operator. Also, the authors characterize the compactness of the {\bf iterated} commutator $[\Pi\vec{b},I{\alpha}]$ of bilinear fractional integral operator. More precisely, the commutator $[\Pi\vec{b},I_{\alpha}]$ is a compact operator if and only if $b\in {\rm CMO}$.

Summary

We haven't generated a summary for this paper yet.