Liouville theorem for the fractional Lane-Emden Equation in unbounded domain (1612.01071v1)
Abstract: Our purpose of this paper is to study the nonexistence of nonnegative very weak solutions of \begin{equation}\label{eq 0.1} \displaystyle (-\Delta)\alpha u = up+\nu\quad {\rm in}\quad \Omega,\qquad\ u=g\quad {\rm in}\quad \mathbb{ R}N\setminus \Omega, \end{equation} where $\alpha\in(0,1)$, $p>0$, $\Omega$ is a unbounded $C2$ domain in $\mathbb{ R}N$ with $N>2\alpha$, $g\in L1(\mathbb{ R}N\setminus \Omega,\frac{dx}{1+|x|{N+2\alpha}})$ nonnegative and $\nu$ is a nonnegative Radon measure. We obtain that\smallskip $(i)$ if $\Omega\supseteq \left(\mathbb{R}N\setminus \overline{B_{r_0}(0)}\right)$ for some $r_0>0$ and $p<\frac{N}{N-2\alpha}$, then fractional Lane-Emden equation has no weak solutions. $(ii)$ if $\Omega\supseteq \left{x\in \mathbb{ R}N:\, x\cdot a>r_0\right}$ for some $r_0\ge 0$, $a\in \mathbb{ R}N$ and $p<\frac{N+\alpha}{N-\alpha}$, then fractional Lane-Emden equation has no weak solutions. Here $\frac{N+\alpha}{N-\alpha}$ is sharp for the nonexistence in the half space. \smallskip The above Liouville theorem could be applied to obtain nonexistence of classical solution of the fractional Lane-Emden equations $$ (-\Delta)\alpha u = up\quad {\rm in}\quad \Omega, \qquad u\ge 0\quad {\rm in}\quad \mathbb{ R}N\setminus \Omega, $$ where $\Omega=\mathbb{R}N\setminus B_{r_0}(0)$ with $r_0>0$ or $\Omega=\mathbb{R}{N-1}\times(0,+\infty)$.