Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Two new families of two-weight codes (1612.00967v2)

Published 3 Dec 2016 in cs.IT and math.IT

Abstract: We construct two new infinite families of trace codes of dimension $2m$, over the ring $\mathbb{F}_p+u\mathbb{F}_p,$ when $p$ is an odd prime. They have the algebraic structure of abelian codes. Their Lee weight distribution is computed by using Gauss sums. By Gray mapping, we obtain two infinite families of linear $p$-ary codes of respective lengths $(pm-1)2$ and $2(pm-1)2.$ When $m$ is singly-even, the first family gives five-weight codes. When $m$ is odd, and $p\equiv 3 \pmod{4},$ the first family yields $p$-ary two-weight codes, which are shown to be optimal by application of the Griesmer bound. The second family consists of two-weight codes that are shown to be optimal, by the Griesmer bound, whenever $p=3$ and $m \ge 3,$ or $p\ge 5$ and $m\ge 4.$ Applications to secret sharing schemes are given.

Citations (71)

Summary

We haven't generated a summary for this paper yet.