Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Gromov--Witten theory of $[\mathbb{C}^2/\mathbb{Z}_{n+1}]\times \mathbb{P}^1$ (1612.00652v3)

Published 2 Dec 2016 in math.AG

Abstract: We compute the relative orbifold Gromov-Witten invariants of $[\mathbb{C}2/\mathbb{Z}_{n+1}]\times \mathbb{P}1$, with respect to vertical fibers. Via a vanishing property of the Hurwitz-Hodge bundle, 2-point rubber invariants are calculated explicitly using Pixton's formula for the double ramification cycle, and the orbifold quantum Riemann-Roch. As a result parallel to its crepant resolution counterpart for $\mathcal{A}n$, the GW/DT/Hilb/Sym correspondence is established for $[\mathbb{C}2/\mathbb{Z}{n+1}]$. The computation also implies the crepant resolution conjecture for relative orbifold Gromov-Witten theory of $[\mathbb{C}2/\mathbb{Z}_{n+1}]\times \mathbb{P}1$.

Summary

We haven't generated a summary for this paper yet.