Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Tuning the Scheduling of Distributed Stochastic Gradient Descent with Bayesian Optimization (1612.00383v1)

Published 1 Dec 2016 in stat.ML and cs.LG

Abstract: We present an optimizer which uses Bayesian optimization to tune the system parameters of distributed stochastic gradient descent (SGD). Given a specific context, our goal is to quickly find efficient configurations which appropriately balance the load between the available machines to minimize the average SGD iteration time. Our experiments consider setups with over thirty parameters. Traditional Bayesian optimization, which uses a Gaussian process as its model, is not well suited to such high dimensional domains. To reduce convergence time, we exploit the available structure. We design a probabilistic model which simulates the behavior of distributed SGD and use it within Bayesian optimization. Our model can exploit many runtime measurements for inference per evaluation of the objective function. Our experiments show that our resulting optimizer converges to efficient configurations within ten iterations, the optimized configurations outperform those found by generic optimizer in thirty iterations by up to 2X.

Citations (2)

Summary

We haven't generated a summary for this paper yet.