Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Geometry of $ν$-Tamari lattices in types $A$ and $B$ (1611.09794v2)

Published 29 Nov 2016 in math.CO

Abstract: In this paper, we exploit the combinatorics and geometry of triangulations of products of simplices to derive new results in the context of Catalan combinatorics of $\nu$-Tamari lattices. In our framework, the main role of "Catalan objects" is played by $(I,\overline{J})$-trees: bipartite trees associated to a pair $(I,\overline{J})$ of finite index sets that stand in simple bijection with lattice paths weakly above a lattice path $\nu=\nu(I,\overline{J})$. Such trees label the maximal simplices of a triangulation whose dual polyhedral complex gives a geometric realization of the $\nu$-Tamari lattice introduced by Pr\'evile-Ratelle and Viennot. In particular, we obtain geometric realizations of $m$-Tamari lattices as polyhedral subdivisions of associahedra induced by an arrangement of tropical hyperplanes, giving a positive answer to an open question of F.~Bergeron. The simplicial complex underlying our triangulation endows the $\nu$-Tamari lattice with a full simplicial complex structure. It is a natural generalization of the classical simplicial associahedron, alternative to the rational associahedron of Armstrong, Rhoades and Williams, whose $h$-vector entries are given by a suitable generalization of the Narayana numbers. Our methods are amenable to cyclic symmetry, which we use to present type $B$ analogues of our constructions. Notably, we define a partial order that generalizes the type $B$ Tamari lattice, introduced independently by Thomas and Reading, along with corresponding geometric realizations.

Summary

We haven't generated a summary for this paper yet.