Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

How to overcome the Courant-Friedrichs-Lewy condition of explicit discretizations? (1611.09646v2)

Published 24 Nov 2016 in cs.NA and physics.comp-ph

Abstract: This manuscript contains some thoughts on the discretization of the classical heat equation. Namely, we discuss the advantages and disadvantages of explicit and implicit schemes. Then, we show how to overcome some disadvantages while preserving some advantages. However, since there is no free lunch, there is a price to pay for any improvement in the numerical scheme. This price will be thoroughly discussed below. In particular, we like explicit discretizations for the ease of their implementation even for nonlinear problems. Unfortunately, when these schemes are applied to parabolic equations, severe stability limits appear for the time step magnitude making the explicit simulations prohibitively expensive. Implicit schemes remove the stability limit, but each time step requires now the solution of linear (at best) or even nonlinear systems of equations. However, there exists a number of tricks to overcome (or at least to relax) severe stability limitations of explicit schemes without going into the trouble of fully implicit ones. The purpose of this manuscript is just to inform the readers about these alternative techniques to extend the stability limits. It was not written for classical scientific publication purposes.

Citations (9)

Summary

We haven't generated a summary for this paper yet.