Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A spectral gap precludes low-dimensional embeddings (1611.08861v1)

Published 27 Nov 2016 in math.MG, cs.DS, math.CO, and math.FA

Abstract: We prove that there is a universal constant $C>0$ with the following property. Suppose that $n\in \mathbb{N}$ and that $\mathsf{A}=(a_{ij})\in M_n(\mathbb{R})$ is a symmetric stochastic matrix. Denote the second-largest eigenvalue of $\mathsf{A}$ by $\lambda_2(\mathsf{A})$. Then for $\mathrm{\it any}$ finite-dimensional normed space $(X,|\cdot|)$ we have $$ \forall\, x_1,\ldots,x_n\in X,\qquad \mathrm{dim}(X)\ge \frac12 \exp\left(C\frac{1-\lambda_2(\mathsf{A})}{\sqrt{n}}\bigg(\frac{\sum_{i=1}n\sum_{j=1}n|x_i-x_j|2}{\sum_{i=1}n\sum_{j=1}na_{ij}|x_i-x_j|2}\bigg){\frac12}\right). $$ This implies that if an $n$-vertex $O(1)$-expander embeds with average distortion $D\ge 1$ into $X$, then necessarily $\mathrm{dim}(X)\gtrsim n{c/D}$ for some universal constant $c>0$, thus improving over the previously best-known estimate $\mathrm{dim}(X)\gtrsim (\log n)2/D2$ of Linial, London and Rabinovich, strengthening a theorem of Matou\v{s}ek, and answering a question of Andoni, Nikolov, Razenshteyn and Waingarten.

Citations (16)

Summary

We haven't generated a summary for this paper yet.