Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Active learning with version spaces for object detection (1611.07285v2)

Published 22 Nov 2016 in cs.CV

Abstract: Given an image, we would like to learn to detect objects belonging to particular object categories. Common object detection methods train on large annotated datasets which are annotated in terms of bounding boxes that contain the object of interest. Previous works on object detection model the problem as a structured regression problem which ranks the correct bounding boxes more than the background ones. In this paper we develop algorithms which actively obtain annotations from human annotators for a small set of images, instead of all images, thereby reducing the annotation effort. Towards this goal, we make the following contributions: 1. We develop a principled version space based active learning method that solves for object detection as a structured prediction problem in a weakly supervised setting 2. We also propose two variants of the margin sampling strategy 3. We analyse the results on standard object detection benchmarks that show that with only 20% of the data we can obtain more than 95% of the localization accuracy of full supervision. Our methods outperform random sampling and the classical uncertainty-based active learning algorithms like entropy

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Soumya Roy (14 papers)
  2. Vinay P. Namboodiri (85 papers)
  3. Arijit Biswas (18 papers)
Citations (8)