2000 character limit reached
Sublabel-Accurate Discretization of Nonconvex Free-Discontinuity Problems (1611.06987v2)
Published 21 Nov 2016 in cs.CV
Abstract: In this work we show how sublabel-accurate multilabeling approaches can be derived by approximating a classical label-continuous convex relaxation of nonconvex free-discontinuity problems. This insight allows to extend these sublabel-accurate approaches from total variation to general convex and nonconvex regularizations. Furthermore, it leads to a systematic approach to the discretization of continuous convex relaxations. We study the relationship to existing discretizations and to discrete-continuous MRFs. Finally, we apply the proposed approach to obtain a sublabel-accurate and convex solution to the vectorial Mumford-Shah functional and show in several experiments that it leads to more precise solutions using fewer labels.