Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Trading information complexity for error (1611.06650v1)

Published 21 Nov 2016 in cs.CC

Abstract: We consider the standard two-party communication model. The central problem studied in this article is how much one can save in information complexity by allowing an error of $\epsilon$. For arbitrary functions, we obtain lower bounds and upper bounds indicating a gain that is of order $\Omega(h(\epsilon))$ and $O(h(\sqrt{\epsilon}))$. Here $h$ denotes the binary entropy function. We analyze the case of the two-bit AND function in detail to show that for this function the gain is $\Theta(h(\epsilon))$. This answers a question of [M. Braverman, A. Garg, D. Pankratov, and O. Weinstein, From information to exact communication (extended abstract), STOC'13]. We obtain sharp bounds for the set disjointness function of order $n$. For the case of the distributional error, we introduce a new protocol that achieves a gain of $\Theta(\sqrt{h(\epsilon)})$ provided that $n$ is sufficiently large. We apply these results to answer another of question of Braverman et al. regarding the randomized communication complexity of the set disjointness function. Answering a question of [Mark Braverman, Interactive information complexity, STOC'12], we apply our analysis of the set disjointness function to establish a gap between the two different notions of the prior-free information cost. This implies that amortized randomized communication complexity is not necessarily equal to the amortized distributional communication complexity with respect to the hardest distribution.

Citations (7)

Summary

We haven't generated a summary for this paper yet.