Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Compressed Sensing from Phaseless Gaussian Measurements via Linear Programming in the Natural Parameter Space (1611.05985v3)

Published 18 Nov 2016 in cs.IT, math.IT, math.OC, and math.PR

Abstract: We consider faithfully combining phase retrieval with classical compressed sensing. Inspired by the recent novel formulation for phase retrieval called PhaseMax, we present and analyze SparsePhaseMax, a linear program for phaseless compressed sensing in the natural parameter space. We establish that when provided with an initialization that correlates with an arbitrary $k$-sparse $n$-vector, SparsePhaseMax recovers this vector up to global sign with high probability from $O(k \log \frac{n}{k})$ magnitude measurements against i.i.d. Gaussian random vectors. Our proof of this fact exploits a curious newfound connection between phaseless and 1-bit compressed sensing. This is the first result to establish bootstrapped compressed sensing from phaseless Gaussian measurements under optimal sample complexity.

Citations (36)

Summary

We haven't generated a summary for this paper yet.