Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Approximating Wisdom of Crowds using K-RBMs (1611.05340v2)

Published 16 Nov 2016 in cs.LG

Abstract: An important way to make large training sets is to gather noisy labels from crowds of non experts. We propose a method to aggregate noisy labels collected from a crowd of workers or annotators. Eliciting labels is important in tasks such as judging web search quality and rating products. Our method assumes that labels are generated by a probability distribution over items and labels. We formulate the method by drawing parallels between Gaussian Mixture Models (GMMs) and Restricted Boltzmann Machines (RBMs) and show that the problem of vote aggregation can be viewed as one of clustering. We use K-RBMs to perform clustering. We finally show some empirical evaluations over real datasets.

Summary

We haven't generated a summary for this paper yet.