Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Spectral theory for random Poincaré maps (1611.04869v2)

Published 15 Nov 2016 in math.PR and math.DS

Abstract: We consider stochastic differential equations, obtained by adding weak Gaussian white noise to ordinary differential equations admitting $N$ asymptotically stable periodic orbits. We construct a discrete-time, continuous-space Markov chain, called a random Poincar\'e map, which encodes the metastable behaviour of the system. We show that this process admits exactly $N$ eigenvalues which are exponentially close to $1$, and provide expressions for these eigenvalues and their left and right eigenfunctions in terms of committor functions of neighbourhoods of periodic orbits. The eigenvalues and eigenfunctions are well-approximated by principal eigenvalues and quasistationary distributions of processes killed upon hitting some of these neighbourhoods. The proofs rely on Feynman--Kac-type representation formulas for eigenfunctions, Doob's $h$-transform, spectral theory of compact operators, and a recently discovered detailed-balance property satisfied by committor functions.

Summary

We haven't generated a summary for this paper yet.