Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Asymptotic behavior for quadratic variations of non-Gaussian multiparameter Hermite random fields (1611.03674v2)

Published 11 Nov 2016 in math.PR

Abstract: Let $(Z{q, H}t){t \in [0, 1]d}$ denote a $d$-parameter Hermite random field of order $q \geq 1$ and self-similarity parameter $H = (H_1, \ldots, H_d) \in (\frac{1}{2}, 1)d$. This process is $H$-self-similar, has stationary increments and exhibits long-range dependence. Particular examples include fractional Brownian motion ($q=1$, $d=1$), fractional Brownian sheet $(q=1, d \geq 2)$, Rosenblatt process ($q=2$, $d=1$) as well as Rosenblatt sheet $(q=2, d \geq 2)$. For any $q \geq 2, d\geq 1$ and $H \in (\frac{1}{2}, 1)d$ we show in this paper that a proper normalization of the quadratic variation of $Z{q, H}$ converges in $L2(\Omega)$ to a standard $d$-parameter Rosenblatt random variable with self-similarity index $H" = 1+ (2H-2)/q$.

Summary

We haven't generated a summary for this paper yet.