Constrained Sparse Galerkin Regression
Abstract: Although major advances have been achieved over the past decades for the reduction and identification of linear systems, deriving nonlinear low-order models still is a chal- lenging task. In this work, we develop a new data-driven framework to identify nonlinear reduced-order models of a fluid by combining dimensionality reductions techniques (e.g. proper orthogonal decomposition) and sparse regression techniques from machine learn- ing. In particular, we extend the sparse identification of nonlinear dynamics (SINDy) algorithm to enforce physical constraints in the regression, namely energy-preserving quadratic nonlinearities. The resulting models, hereafter referred to as Galerkin regression models, incorporate many beneficial aspects of Galerkin projection, but without the need for a full-order or high-fidelity solver to project the Navier-Stokes equations. Instead, the most parsimonious nonlinear model is determined that is consistent with observed mea- surement data and satisfies necessary constraints. Galerkin regression models also readily generalize to include higher-order nonlinear terms that model the effect of truncated modes. The effectiveness of Galerkin regression is demonstrated on two different flow configurations: the two-dimensional flow past a circular cylinder and the shear-driven cavity flow. For both cases, the accuracy of the identified models compare favorably against reduced-order models obtained from a standard Galerkin projection procedure. Present results highlight the importance of cubic nonlinearities in the construction of accurate nonlinear low-dimensional approximations of the flow systems, something which cannot be readily obtained using a standard Galerkin projection of the Navier-Stokes equations. Finally, the entire code base for our constrained sparse Galerkin regression algorithm is freely available online.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.