Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Faster Kernel Ridge Regression Using Sketching and Preconditioning (1611.03220v4)

Published 10 Nov 2016 in cs.NA, cs.DS, cs.LG, and math.NA

Abstract: Kernel Ridge Regression (KRR) is a simple yet powerful technique for non-parametric regression whose computation amounts to solving a linear system. This system is usually dense and highly ill-conditioned. In addition, the dimensions of the matrix are the same as the number of data points, so direct methods are unrealistic for large-scale datasets. In this paper, we propose a preconditioning technique for accelerating the solution of the aforementioned linear system. The preconditioner is based on random feature maps, such as random Fourier features, which have recently emerged as a powerful technique for speeding up and scaling the training of kernel-based methods, such as kernel ridge regression, by resorting to approximations. However, random feature maps only provide crude approximations to the kernel function, so delivering state-of-the-art results by directly solving the approximated system requires the number of random features to be very large. We show that random feature maps can be much more effective in forming preconditioners, since under certain conditions a not-too-large number of random features is sufficient to yield an effective preconditioner. We empirically evaluate our method and show it is highly effective for datasets of up to one million training examples.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Haim Avron (51 papers)
  2. Kenneth L. Clarkson (27 papers)
  3. David P. Woodruff (206 papers)
Citations (118)

Summary

We haven't generated a summary for this paper yet.