Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Noncommutative functional calculate and its application (1611.02981v2)

Published 7 Nov 2016 in math.FA

Abstract: In this paper we construct an unitary operator $F_{xx*}$ such that $(F_{xx{*}})2=identity$ and $Fix(F_{xx*})\neq\emptyset$. We get the unitary equivalent representations $F_{xx*}(M_{z\psi(z)}-a)$ on $\mathcal{L}{2}(\sigma(|T+a|),\mu_{|T+a|})$ for any given $T\in\mathcal{B}(\mathbb{H})$, where $\psi(z)\in\mathcal{L}{\infty}(\sigma(|T+a|),\mu_{|T+a|})$, $a\in\rho(T)$, $F_{xx*}(f(xx*))=f(x*x)$, $\mathcal{B}(\mathbb{H})$ is the set of all bounded linear operator on complex separable Hilbert space $\mathbb{H}$. Also, we get that if $z\psi(z)\in Fix(F_{xx*})$, then $T$ has a nontrivial invariant subspace space on $\mathbb{H}$ which has dimension $>1$. Moreover, we define the Lebesgue class $\mathcal{B}_{Leb}(\mathbb{H})\subset\mathcal{B}(\mathbb{H})$ and get that if $T$ is a Lebesgue operator, then $T$ is Li-Yorke chaotic if and only if $T{*-1}$ is.

Summary

We haven't generated a summary for this paper yet.