Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Recursive Regression with Neural Networks: Approximating the HJI PDE Solution (1611.02739v4)

Published 8 Nov 2016 in cs.LG and math.DS

Abstract: The majority of methods used to compute approximations to the Hamilton-Jacobi-Isaacs partial differential equation (HJI PDE) rely on the discretization of the state space to perform dynamic programming updates. This type of approach is known to suffer from the curse of dimensionality due to the exponential growth in grid points with the state dimension. In this work we present an approximate dynamic programming algorithm that computes an approximation of the solution of the HJI PDE by alternating between solving a regression problem and solving a minimax problem using a feedforward neural network as the function approximator. We find that this method requires less memory to run and to store the approximation than traditional gridding methods, and we test it on a few systems of two, three and six dimensions.

Citations (20)

Summary

We haven't generated a summary for this paper yet.