Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Estimating motion with principal component regression strategies (1611.02637v1)

Published 8 Nov 2016 in cs.CV

Abstract: In this paper, two simple principal component regression methods for estimating the optical flow between frames of video sequences according to a pel-recursive manner are introduced. These are easy alternatives to dealing with mixtures of motion vectors in addition to the lack of prior information on spatial-temporal statistics (although they are supposed to be normal in a local sense). The 2D motion vector estimation approaches take into consideration simple image properties and are used to harmonize regularized least square estimates. Their main advantage is that no knowledge of the noise distribution is necessary, although there is an underlying assumption of localized smoothness. Preliminary experiments indicate that this approach provides robust estimates of the optical flow.

Citations (2)

Summary

We haven't generated a summary for this paper yet.