Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Serre Dimension of Monoid Algebras (1611.02466v1)

Published 8 Nov 2016 in math.AC

Abstract: Let $R$ be a commutative Noetherian ring of dimension $d$, $M$ a commutative cancellative torsion-free monoid of rank $r$ and $P$ a finitely generated projective $R[M]$-module of rank $t$. $(1)$ Assume $M$ is $\Phi$-simplicial seminormal. $(i)$ If $M\in \CC(\Phi)$, then {\it Serre dim} $R[M]\leq d$. $(ii)$ If $r\leq 3$, then {\it Serre dim} $R[int(M)]\leq d$. $(2)$ If $M\subset \BZ_+2$ is a normal monoid of rank $2$, then {\it Serre dim} $R[M]\leq d$. $(3)$ Assume $M$ is $c$-divisible, $d=1$ and $t\geq 3$. Then $P\cong \wedget P\op R[M]{t-1}$. $(4)$ Assume $R$ is a uni-branched affine algebra over an algebraically closed field and $d=1$. Then $P\cong \wedget P\op R[M]{t-1}$.

Summary

We haven't generated a summary for this paper yet.